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We determine wave number q and frequency � dependent spin Hall conductivities �yx
s �q ,�� for a disordered

two-dimensional electron system with Rashba spin-orbit interaction when q is transverse to the electric field.
Both the conventional definition of spin current and its new definition which takes care of the conservation of
spins have been considered. The spin Hall conductivities for both of these definitions are qualitatively similar.
�yx

s �q ,�� is zero at q=0, �=0 and is maximum at q=0 and at small but finite � whose value depends on
different parameters of the system. Interestingly for �→0, �yx

s �q� resonates when ��Lso which are the
wavelength ��=2� /q� of the electric field’s spatial variation and the length for one cycle of spin precession,
respectively. The sign of the out-of-plane component of the electrons’ spin flips when the sign of electric field
changes due to its spatial variation along transverse direction. It changes the mode of spin precession from
clockwise to counterclockwise or vice versa, and consequently a finite spin Hall current flows in the bulk of the
system.

DOI: 10.1103/PhysRevB.78.205313 PACS number�s�: 72.25.�b, 71.70.Ej

I. INTRODUCTION

One of the primary goals today in spin-based electronics1

is the generation of spin current. Recent realization of spin
Hall effect �SHE� �Refs. 2–4� in semiconductor systems is
certainly a very significant achievement in this direction.
This is a phenomenon for electrical generation of spin: a
charge current along its transverse direction induces a spin
current whose polarization is perpendicular to the plane
formed by these two currents. This phenomenon was
predicted5–7 long ago due to the spin-asymmetric “skew-
scattering” mechanism and spin-dependent “side-jump”
mechanism which are collectively called extrinsic mecha-
nisms because the spin-orbit interaction �SOI� is disordered
in this case. This mechanism is also responsible for anoma-
lous Hall effect �AHE� �Refs. 8 and 9� in ferromagnets.
However uniform �pure� SOI which is intrinsic10 also causes
AHE. Similar intrinsic mechanism due to the SOI in hole-
doped semiconductors11 and two-dimensional electron gas
�2DEG� �Ref. 12� in semiconductor heterostructures have
been predicted to give rise to nondissipative spin Hall con-
ductivity �SHC�.

The spin accumulation observed in n-doped GaAs �Ref.
2� is believed to be extrinsic in origin because of small spin
accumulation and its directional independence on the electric
field. On the other hand spin accumulation in two-
dimensional hole gas �2DHG� is large3 and hence is sug-
gested to be intrinsic in origin. These experiments do not
measure the spin voltage or the spin current, however the
technique developed in observing charge accumulation13 at
the transverse edge due to spin current which is called in-
verse SHE could be useful in measuring spin Hall current.
Nevertheless estimated SHC from the observation of spin
accumulation2 in n-doped GaAs is in good agreement with
the calculated14,15 SHC in extrinsic mechanisms. An effec-
tive two band cubic �in momentum� Rashba model describes
the electronic states in 2DHG well. Even in presence of dis-
order, the SHC in 2DHG has nonzero16 intrinsic contribution.

The responsible mechanism for SHE in 2DEG which we
study here is particularly not clear yet. The electronic states
in the 2DEG formed in semiconductor heterostructures can
be well described by the Hamiltonian

H0 =
k2

2m
�0 + ��ky�1 − kx�2� , �1�

where k and m are the momentum and mass of the electrons,
respectively, � is the Rashba spin-orbit coupling strength,17

�0 is the unit matrix, and �i are the Pauli matrices. �We have
set the unit �=c=1.� Sinova et al.12 predicted universal SHC
�yx

s =e /8� for such systems using conventional definition of
spin current ĵ�= 1

2 �s� , v̂k�, where group velocity v̂k=�kH0
and s�=�� /2 is the �th ��=1–3� component of spin. How-
ever after a prolonged debate,18–28 the consensus arising
from various methods of calculations is that �yx

s =0 in pres-
ence of disorder no matter what its strength is. These studies
include calculation of vertex correction19 in Born approxima-
tion, using Keldysh formalism20,21,27 for any value of lifetime
	, using Kubo formula analytically22,23,28 and
numerically,25,26 and Boltzmann transport equation
approach.24 The equation of motion for spin projected on the
plane is �t��1 ,�2�=−4m�� ĵx

3 , ĵy
3�. A very unique feature18,22

of the linear Rashba model is that �t�2 is proportional to ĵy
3.

It suggests zero-spin Hall current in the steady state.22 This
simple argument describes the vanishing �yx

s for such sys-
tems. A similar argument also describes spin-spin Hall
current28 since jx

1=−jy
2 for steady state derivable from the

equation �t�3=4m�� ĵx
1+ ĵy

2�. All these results are obtained
from the above conventional definition of ĵ� which is not
conserved. The new definition of conserved spin current pro-
posed by Shi et al.29 gives rise to vanishing total �yx

s for
short-ranged 
�r� impurity potential and for long-ranged po-
tential up to first-order Born approximation.27

Is then the intrinsic mechanism really absent for spin Hall
effect in 2DEG? In a disordered 2DEG, an in-plane applied
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magnetic field may lead to the nonvanishing intrinsic SHC
�Ref. 30� due to Zeeman coupling. Further the interplay of
Zeeman coupling with different spin-orbit interactions may
also lead to finite SHC �Ref. 31� in a pure system. In this
paper, we calculate SHC using Kubo formula at finite fre-
quency � and momentum q transverse to the applied electric
field within the intrinsic mechanism in a disordered 2DEG
with no applied magnetic field. We find that even in the static
limit, SHC is nonvanishing and hence the presence of “in-
trinsic” mechanism for spin Hall effect in 2DEG is demon-
strated.

The paper is organized as follows. In Sec. II, we calculate
frequency and transverse momentum-dependent SHC in a
disordered 2DEG with Rashba SOI using Kubo formula with
the conventional definition of spin current. The contribution
of spin torque to the SHC is also calculated and this contri-
bution, shown in Sec. III, is qualitatively similar. We find
that SHC is reasonably high at some range of frequencies
and momenta. Particularly interesting case is for static but
spatially varying electric field. The SHC resonates when the
wavelength of the spatial variation of the electric field
matches with the spin precession length. A simple mecha-
nism for this “anomalous” spin Hall current in 2DEG is de-
scribed in Sec. IV. Section V is devoted for an experimental
proposal to test this mechanism, discussion, and summary.

II. SPIN HALL CONDUCTIVITY

The spin Hall current for an electric field E�q ,�� at the
wave vector q transverse to the direction of E and at the
frequency �, jy

s�q ,��=�yx
s �q ,��Ex�q ,��. The spin Hall con-

ductivity is nonlocal; spin current at a position r depends on
the electric field surrounding it jy

s�r ,��=�dr��yx
s ��r

−r�� ,��Ex�r� ,��. Using Kubo formula,32 we find the trans-
verse spin Hall conductivity

�yx
s �q,�� =

1

2�
RTr�	 dk

�2��2 ĵy
3
k +

q

2
�Ĝk

A�0�

� � ĵx
0
k +

q

2
� + Ĵx

0�q,��Ĝk+q
R ���� , �2�

with

Ĵx
0 =

1

m	
	 dk�

�2��2 Ĝk�
A �0�� ĵx

0
k� +
q

2
� + Ĵx

0Ĝk�+q
R ��� . �3�

Here retarded �advanced� Green’s function for an energy �
can be written as

Ĝk
R,A��� =

1

2 �
s=

�0 + s�ky�1 − kx�2�/�k�

� − �k
s 

i

2	

. �4�

Equations �2� and �3� together describe sum over infinite
series of ladder diagrams. We solve the matrix Eq. �3� nu-
merically and then using Eq. �2� we calculate �yx

s �q ,�� when
E �ex and q �ey, i.e., transverse �yx

s �q�. For a system with
Fermi energy �F and spin-splitting energy 2�kF, with kF be-
ing the Fermi momentum, we choose two parameters �

=�F	 and 
=2�kF	 comparing to disorder broadening 1 /	.
We show �yx

s �q ,�� for �=10 and 20 and 
=0.4 and 0.8 in
Fig. 1. The standard resonances occur at finite � and at zero
or very low value of q. The maximum value of �yx

s �q ,�� is
almost proportional to 
2 and it decreases with the increase
of �. One common interesting feature for different combina-
tion of the parameters to notice is that the value of �yx

s �q ,��
is not small for �→0 and q / �2m���1.0. Figure 2 shows
�yx

s �q ,0� for �=10 and 
=0.1, 0.4, 0.8, and 1.2. These
choices of 
 correspond to ��Lso, where Lso=� / �m�� being
the length traversed by an electron while its spin precesses
by one cycle. We have checked that �yx

s �q ,0� is independent
of � for a wide range of ��1 while 
 is fixed and is almost
proportional to 
2. �yx

s is zero at q=0 as we know from
various calculations19–28 and then it gradually increases with
q and forms a peak around q�2m� before it vanishes as-
ymptotically. The position of the peak is almost independent
of 
 but does depend on �. Since q / �2m��=Lso /�, the spin
Hall current is maximum when ��Lso. In the limit of small
disorder broadening, i.e., for large 
, �yx

s �q� resonates exactly
at q=2m� as in the case of 
=1.2. Choosing different values
of 
 for a fixed value of � implies different values of Lso.
The larger value of 
 means smaller Lso. As the value of Lso
becomes smaller, the decrease in SHC will be faster from its
peak value for both increase and decrease of �. This is the
reason for narrower width of the SHC peak for larger values
of 
 as we see in Fig. 2. The peak value of �yx

s �q� is larger for
larger 
, i.e., for larger � as well as 	.

To demonstrate the resonance in �yx
s �0,q� analytically, we

calculate Ĵx
0 in Eq. �3� for qx=0 and qy =q. We sum over

infinite series of ladder diagrams starting with the contribu-
tion from ladder with just one bar

1

m	
	 dk�

�2��2 Ĝk�
A �0� ĵx

0
k� +
q

2
�Ĝk�+q

R �0� � �
�=0

3

J�
0��. �5�

Expressing Ĵx
0=��=0

3 J��� and summing over geometrical se-
ries obtained from ladder diagrams we find that only J2 and
J3 survive at qx=0 and they are

J2 � J2
0� 1

1 − I22
+

I23I32

�1 − I22�2�1 − I33�
� + J3

0 I23

�1 − I22��1 − I33�
,

�6�

J3 � J3
0 1

1 − I33
+ J2

0 I32

�1 − I22��1 − I33�
, �7�

where

I�� =
1

2m	
Tr�	 dk�

�2��2��Ĝk�
A �0���Ĝk�+q

R �0�� . �8�

Since the resonance occurs in �yx
s �0,q� at q�2m��kF, we

may wish to evaluate I�� up to quadratic in q and hence the
relevant components are I22=1− �� /m�	q2−
2 /2, I33=1
− �� /m�	q2−
2, and I32=−I23=2i
�q /kF for 
�1. In this
approximation, J2

0=e�
2 /2 and J3
0=−iqe
2 /4m. Using Eq.

�2�, we thus find
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�yx
s �0,q� �

�e/2��
2q̃2

�q̃2 + 1��q̃2 + 2��5

4
−

1

�q̃2 + 1�� , �9�

where q̃=q / �2m��. As we have seen in our numerical evalu-
ation, �yx

s is independent of � and proportional to 
2 for
small 
. The expression of �yx

s �Eq. �9�� is graphically shown
in Fig. 2. It agrees well with the numerical evaluation at low
q̃. The discrepancy at higher q̃ is expected as we have evalu-
ated I��, J2

0, and J3
0 analytically up to quadratic in q only.

Nevertheless analytical expression �9� explicitly shows the
resonance in �yx

s �0,q�.

III. SPIN HALL CURRENT FOR SPIN TORQUE

The above calculation of �yx
s has been performed using

the conventional definition of the spin current. We now con-
sider the new definition of the spin current J3 which is de-
fined to satisfy continuity equation �tS3+� ·J3=0 and can be
expressed as the sum of J3 and spin torque dipole density P	;
i.e., J3=J3+P	 as proposed by Shi et al.29 Here S3 and J3 are
the spin density and conventional spin current-density opera-
tors, respectively. Further the spin torque density operator is
expressed as 	3�r�=−� ·P	�r� since the average torque den-

-0.05

0

0.05

0.1

0.15

0.2

0.25

0

0.5

1

1.5

2

2.5

3

00.050.10.150.2

q/(2m
λ)

ω/εF

-0.04
-0.02
0
0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
0.18

0

0.5

1

1.5

2

2.5

3

00.050.10.150.2

q/(2m
λ)

ω /ε F

-0.05

0

0.05

0.1

0.15

0.2

0.25

0

0.5

1

1.5

2

2.5

3

00.050.10.150.2

ω/εF

q/(2m
λ)

-0.04
-0.02
0
0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
0.18

0

0.5

1

1.5

2

2.5

3

00.050.10.150.2

ω/εF

q/(2m
λ)

(a)

(c)

(b)

(d)

FIG. 1. �Color online� Transverse spin Hall conductivity �yx
s in the unit of 
2�e /2�� as a function of q / �2m�� �vertical axis� and � /�F

�horizontal axis�. The parameters �=10, 
=0.4 �b�, �=20, 
=0.4 �d�, �=10, 
=0.8 �a�, and �=20, 
=0.8 �c� are considered.
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FIG. 2. �Color online� Spin Hall conductivity �yx
s �dot-dashed

and dashed lines� for the conventional definition of the spin current
vs q / �2m�� for 
=0.1, 0.4, 08, and 1.2 from top to bottom and for
a fixed value of �=10. �yx

s is in the unit of e
2 /2�. �yx
s is indeed

independent of � as we have checked for a wide range of ��1.
The maximum value of �yx

s occurs at q / �2m���1. The width of the
peak in �yx

s is larger for smaller values of 
 and the value of the
peak is larger for larger values of 
. Solid line represents the ana-
lytical expression �9� of �yx

s for small 
.
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sity vanishes in the bulk of the system. The second-quantized
form of the spin torque is

	3�q,t� = �
k,�,�

Ck,�
† �t�	̂��
k +

q

2
�Ck+q,��t� , �10�

where Ck,�
† �t� is the electronic creation operator of momen-

tum k and spin � �up or down� at time t and the spin torque
operator 	̂�k+ q

2 �=��k+ q
2 � ·�. We define spin torque-charge

current correlation function

Qx
	0�qx,qy,�� =

1

2�
Tr�	 dk

�2��2 	̂
k +
q

2
�Ĝk

A�0�

� � ĵx
0
k +

q

2
� + Ĵx

0�q�Ĝk+q
R ���� , �11�

such that 	3�0,q ,��=Qx
	0�0,q ,��Ex. Therefore the extra part

of transverse spin Hall conductivity for an application of
electric field along x direction is

�yx
�2��q,�� = −

JQx
	0�q,��

q
. �12�

The total �conserved� transverse SHC is then �yx
cs�q ,��

=�yx
s �q ,��+�yx

�2��q ,��. The values of �yx
cs�q ,�� for �=10 and

20 and 
=0.4 and 0.8 are shown in Fig. 3. The total trans-
verse SHC is qualitatively similar to the same calculated for
conventional spin current shown in Fig. 1. Figure 4 shows
�yx

cs�q� at zero frequency for �=10 and 
=0.1, 0.4, 08, and
1.2, although the value of � is immaterial. The only relevant
parameter is 
. The peak in SHC occurs at q / �2m���1 and
the width of the peak is larger for smaller value of 
 as in the
previous case shown in Fig. 2. Also the maximum value of
�yx

cs�q� is larger for larger 
 and it is almost two times that of
�yx

s �q�.

IV. MECHANISM FOR ANOMALOUS SPIN HALL
CURRENT

The time derivative of the charge current operator is given
by
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FIG. 3. �Color online� Total transverse spin Hall conductivity �yx
cs in the unit of 
2�e /2�� as a function of q / �2m�� �vertical axis� and

� /�F �horizontal axis�. The parameters �=10, 
=0.4 �b�, �=20, 
=0.4 �d�, �=10, 
=0.8 �a�, and �=20, 
=0.8 �c� are considered.
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�tĵk
0 =

e

m
�tk − 4em�2�ez � ĵk

3� . �13�

Therefore in the presence of external electric field E, the
steady-state equation becomes

e2

m
E =

�ĵk
0�
	

+ 4em�2�ez � �ĵk
3�� , �14�

where ez is the unit vector along z direction and angular
brackets represent average value of the quantity inside angu-
lar brackets. Therefore the electric field creates not only the
charge current but also the spin current for an electron with
momentum k. Although some electrons move perpendicular
to the electric field, their spin precesses about �k= �kyex
−kxey� / �k� while moving and hence no net spin current flows
in the bulk of the system. This is an alternative description
for vanishing �yx

s in the system for static and uniform electric
fields. However the situation alters when the electric field is
static but nonuniform along its transverse direction. The ba-
sic physics behind the anomalous behavior for spatial varia-
tion of the electric field is described in Fig. 5. If the electric
field is applied along x direction, due to the wave propaga-
tion along y direction, sign of the electric field changes al-
ternately along y direction with the wavelength �=2� /q.
The spin of an electron moving along y direction will precess
in the y−z plane with the precession length Lso. However at
the position where the sign of the electric field changes, the
clockwise �counterclockwise� precession will change into
counterclockwise �clockwise� precession as in Fig. 5. This is
because the sign of the z component of the spin changes as
described by Eq. �14�. The mode of spin precession for the
electrons moving along negative y direction will be exactly
opposite and therefore there will be a net z-polarized spin-
current along y direction. The spin current will be maximum
when Lso�� and it will sharply fall for the change in �
either way. This argument for anomalous spin Hall current is
somewhat similar to the ineffectiveness concept of Pippard33

for anomalous skin effect in metals but the fundamental dif-
ference is that the former occurs for ��Lso while the latter

is due to ��� �� is the mean-free path of an electron�. The
present picture is of course valid for ��Lso.

We have determined the transverse wave number q depen-
dent spin Hall conductivity by using Kubo formula in Secs.
II and III and show here how the basic physics presented in
Fig. 5 describes the anomalous spin Hall current. On the
other hand, there will be no longitudinal spin Hall current
�when q �E� for nonuniform but static electric field because
the electrons moving transverse to the electric field will not
feel any change in sign of the electric field.

V. DISCUSSION AND SUMMARY

Spin accumulation observed by Sih et al.4 in two-
dimensional electron gas corresponds to the value of 

�0.1. This is in the large disorder limit. Although the ap-
plied electric field is uniform, the electronic inhomogeneity
in the system due to disorder may cause spatial variation of
the electric field in the system. The variation of the electric
field describes the presence of modes q. If transverse q is
closer to 2m�, the contribution of these modes to the spin
Hall conductivity is not negligible. The presence of anoma-
lous spin Hall current is then certain although the magnitude
may be small since 
 is small in this experiment.4 This con-
tribution is intrinsic because the spin-orbit interaction is not
disordered. Consideration of extrinsic mechanisms along
with the intrinsic spin-orbit interaction provides finite34,35

spin Hall conductivity in presence of uniform electric field as
well. However, any quantitative comparison of the anoma-
lous spin Hall conductivity presented in this paper to the
experiment,4 with the contribution arising from extrinsic
effect,34,35 or to the spin accumulation across the edges in a
ballistic system36 is beyond the scope of the present study.
Nevertheless our theory may be tested by applying a spa-
tially varying electric field with the variation along its trans-
verse direction. The geometry for an experimental proposal
to test the mechanism for “anomalous” spin Hall current is
depicted in Fig. 6.
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FIG. 4. �Color online� Total spin Hall conductivity �sh
cs�q� as a

function of q / �2m��. Other quantities and descriptions are the same
as in Fig. 2.
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FIG. 5. �Color online� Electric field along x axis and its varia-
tion along y axis with wavelength �. Electrons moving along y axis
will have spin precession in the y−z plane. Lso is the spin preces-
sion length which is the length traversed by an electron while its
spin precesses by an angle 2�. Lines with arrow indicate the direc-
tion of spin while it precesses. The mode of rotation of spin changes
when the sign of the electric field changes. Therefore the spatial
sign change of the electric field induces a net out-of-plane spin
current in the transverse direction. The spin current will be at maxi-
mum when ��Lso.
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The other studies at finite q in this Rashba 2DEG are the
induction of spin-density by electromagnetic wave,37 the re-
sponse of the in-plane polarization38 to the transverse electric
field in a pure system, and determination of density-density
correlation function39 at all q. In a cubic Rashba model
which is relevant for two-dimensional hole gas, the intrinsic
SHC is nonzero,16 but the conserved spin Hall conductivity

vanishes27 for short-ranged impurity potential. Therefore it is
indeed interesting to look into if these systems also have
anomalous spin Hall current40 like what we have described
here.

In summary, we have determined spin Hall conductivity at
finite frequency and finite transverse wave vector in a disor-
dered two-dimensional electron gas with Rashba spin-orbit
interaction. Interestingly at zero or small frequencies, we
have found an anomalous spin Hall conductivity which reso-
nates when the wavelength of the spatial variation of the
electric field matches with the length of spin precession. The
mechanism responsible for this is the change in the direction
of spin precession for electrons moving perpendicular to the
electric field when the sign of the electric field changes due
to spatial variation. This is primarily due to the change in
sign of the out-of-plane component of spin.
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